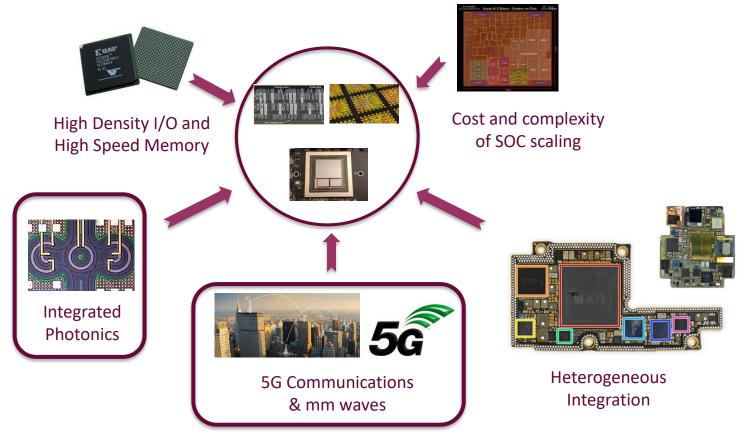


Glass Substrates for RF and Photonics Packaging and Integration

Joseph lannotti GE Research

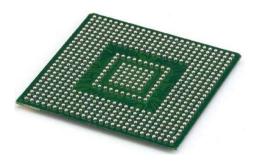
Paul Ballentine Mosaic Microsystems Thomas Budka RF Diagnostics

Cadence Photonics Summit November 13, 2019

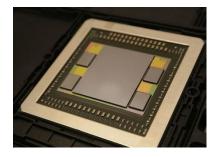


Outline

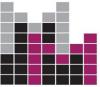
- Motivations for Advanced Packaging
- The Use of Thin Glass Substrates with Through-Glass Vias (TGV)
- Glass handling solution
- RF Applications
- Photonic Applications
- Thermal Control



What's Driving Advanced Packaging?


Substrate Materials


Organic Laminates


Ceramic (thin film, thick film, HTCC, LTCC)

Silicon

Glass

Glass Has Many Advantages

			Materi	Materials			
Characteristic	Ideal Properties	Glass	Si	Poly Si	Organic	Metal	Fused Silica
Electrical	High resistivityLow loss and low k						
Physical	 Smooth surface finish Large area availability Ultra thin 						
Thermal	 High Conductivity 						
Mechanical	 High strength & modulus 						
Chemical	 Resistance to proces chemicals 						
TPV and RDL	 Low cost Via formation and fill 						
Reliability	 CTE matched to Si and PWB 						
Optical	 Low loss visible and IR, easy fiber attach 						
Cost	 Low raw material and processing costs 						

Chart courtesy of Georgia Tech PRC

Reduced SWaP-C

✓ CTE match to Si

waveguides

 \geq

 \checkmark Low dielectric constant and

✓ Drawn in large sheets (1m x 500m) – low cost panel

 \checkmark Can be drawn 100 μ m thick –

✓ Smooth surface (< 1 nm rms)

✓ Inert, no moisture absorption
✓ Optical properties, fiber attach,

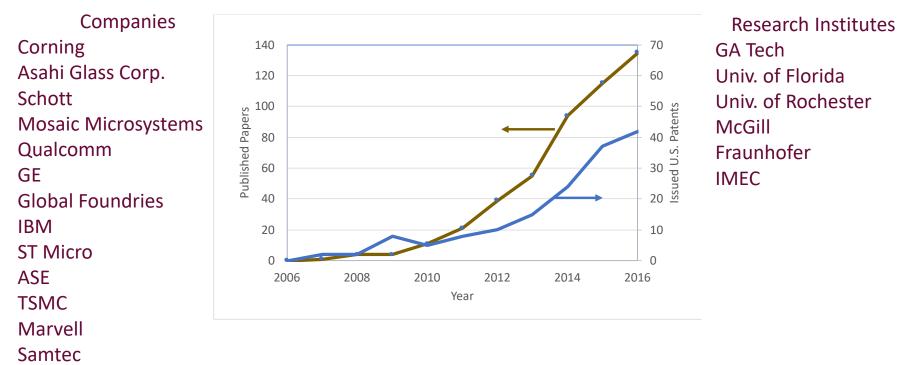
processing possible

no grinding necessary

features

loss tangent through 100 GHz ✓ Dimensional stability – precise

Technologies and Markets for Glass Interposers


	RF	Optics & Photonics	Digital Interposer	MEMS & Sensors
Wireless Comms.	\checkmark	\checkmark	\checkmark	\checkmark
Datacom and HPC	\checkmark	\checkmark	\checkmark	
Defense	\checkmark	\checkmark	\checkmark	\checkmark
Medical	\checkmark	\checkmark		\checkmark
ют	\checkmark			\checkmark
Consumer	\checkmark	\checkmark	\checkmark	\checkmark

Desirable RF and photonic properties make glass a promising choice for RF photonics

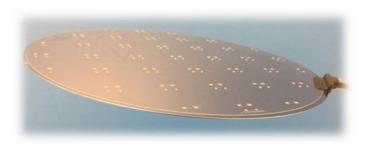
Menlo Micro

Increasing Interest in Glass

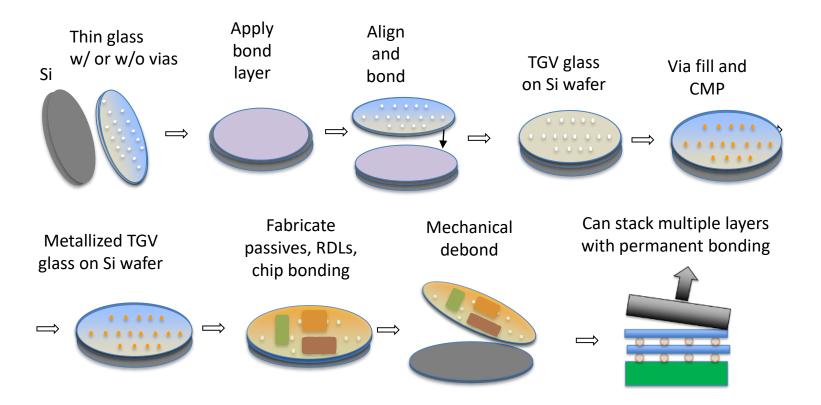

Published papers by Google Scholar and Patents by USTPO. Searches for "glass interposers"

Glass Wafer Handling Challenges and Solution

The Challenge: Immature supply chain Thin glass with through-holes has challenges:

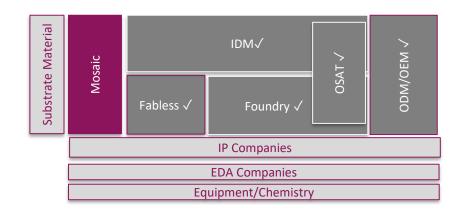

- Excess sag
- Transparent to robotic sensing
- Breakage
- Concern over contamination

The Solution:


Thin glass with TGVs temporarily bonded to silicon carrier wafer

- Inorganic bond stable up to 400C
- No outgassing
- Simple mechanical de-bond
- Compatible with existing semiconductor processing and automation equipment

Wafer Handling and Processing Technology

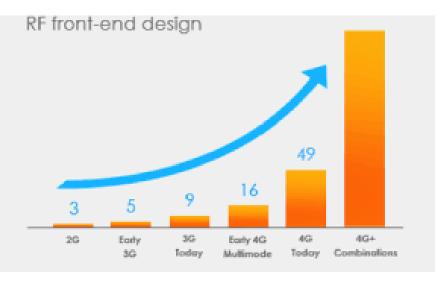


Mosaic's Products: Bonded Glass Wafers

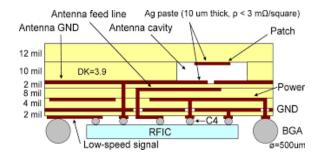
	Thin glass on Carrier	Glass thickness 100 μm - 300 μm Carrier
	Glass with custom through-glass holes	Hole diameter ≤ 35 µm Carrier
Mente 202	Fully or conformally filled vias	Filled vias w/ CMP
	Thin glass with custom structures and devices	Carrier

Supply Chain

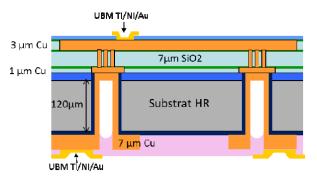
- Mosaic serves companies across the electronics supply chain.
- Some companies will buy direct while others will influence or specify the technology.
- The type of product we provide depends on the application and type of customer.



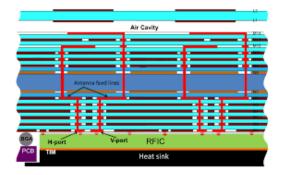
RF Applications of Glass

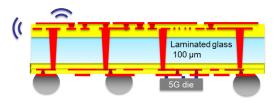

Increasing Complexity of RF Systems is Driving New Packaging Technology

- RF front ends for user equipment and infrastructure getting more complex
- Multi-bands, multi-carrier, multistandards, and MIMO, along with WiFi, BT, and GPS
- 5G will make things even more complicated with both sub 6 GHz and mm waves.
 - ≥28 80 GHz and 2 10 Gbps
- Mm Waves will require beam forming and steering – so phased arrays.



80+ Filters in LTE and 5G Phones


Millimeter Wave Packaging Substrate Materials

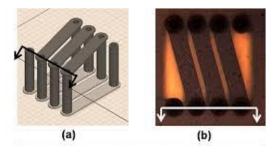

Ceramic (IBM)

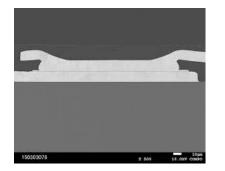
HR Silicon (LETI)

Organic (IBM)

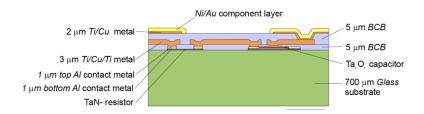
Glass with Organic Buildup (GA Tech)

All Inorganic Package with Glass

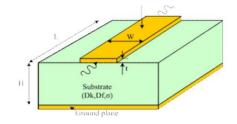

- Multiple layers possible with thermocompression bonding
- Au microstrip, CPWG, and Stripline
- CPWG loss < 0.4 dB/mm @ 30 GHz
- High isolation between transmission lines
- Ta resistors
- MIM capacitors
- Can be used to make a variety of mm wave devices including True Time Delay modules

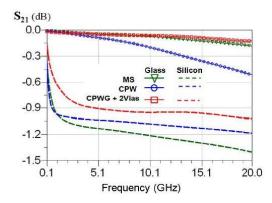

All Glass (GE)

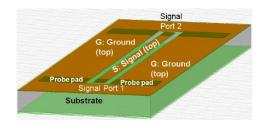
Thin Film Passives on Glass

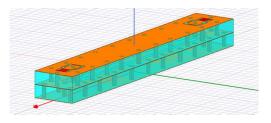

3D Helical Inductors (Corning and Qualcomm)

MIM Capacitor with SiN dielectric (Corning and Qualcomm)


Helical inductors on glass with TGV give 45% reduction in area vs. spiral (TSMC)


Ta and TaN thin film resistors (IMEC)


Transmission Lines on Glass


Microstrip (Corning, Qualcomm, and Dai Nippon Screen)

Glass vs. Si Performance Comparison (ITRI and Corning)

CPW (ITRI and Corning)

Stripline with TGV Array (GE and Mosaic)

Less than 0.1 dB/mm loss for CPWG @ 10 GHz

GE and Mosaic Capabilities and Design Rules*

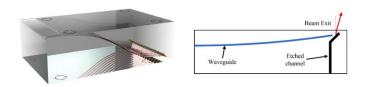
TGV Glass (Mosaic)

Packaging (GE)

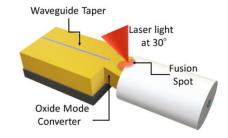
Materials	Borosilicate Glass,	Layers of Glass		
	Fused Silica	Metals		
Substrate Diameter	100, 150, 200 mm, may add 300mm	Catch Pad Diameter		
Thickness	100 um – 200 um, will add 300 um	Diameter	5	
		Metal Thickness	uodn	
Surface Roughness	< 1 nm	Line width	n GE	
		Line spacing	iron	
Via Diameter max	35 um	Capacitor material	Available from request	
Via diameter min	10 um		lab	
	20 0111	Capacitance/mm ²	Availabl request	
Via sidewall slope	2 degrees	Resistors	A 5	
Via pitch	< 150um now, going to 2X diameter	Resistors		
		Wafer diameter		

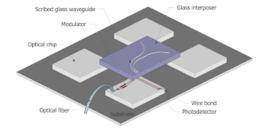
* RF Diagnostics has experience in designing mm wave packages with TGV glass

Photonic Applications of Glass


Si vs. Glass Interposers for Photonics

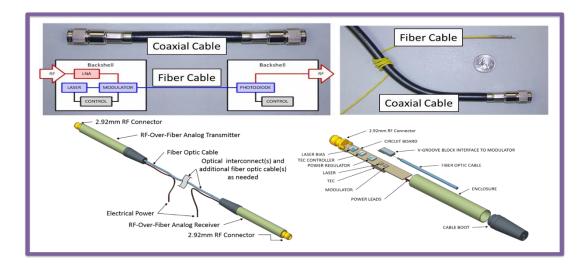
- Si most common substrate for photonic interposers
- Advantages of Si
 - Can be used for an active or passive interposer
 - Uses the same process technology as is used for SIP die
- Capabilities of Glass:
 - Transparent to wavelengths of interest
 - Can incorporate waveguides, either deposited or laser written
 - Can provide passive fiber attach solution
 - Better choice for RF photonics due to superior RF properties
 - Lower cost than Si


Laser Writing of Optical Waveguides in Glass


- McGill
- Optoscribe
- Harvard
- STMicro
- Corning
- IMRA
- SUNY Binghamton
- NIAIST (Japan)

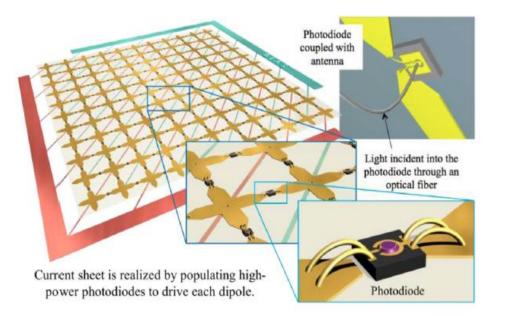
Direct welding of fiber to glass (University of Rochester)

Low Loss, 0.2 dB/cm (Optoscribe)



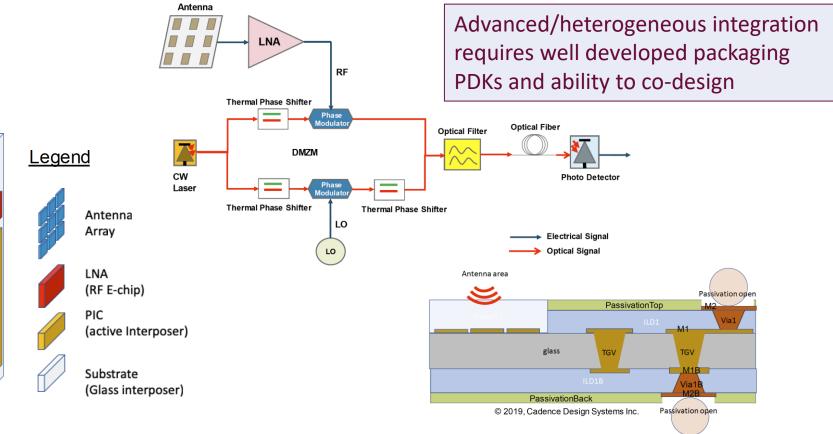
Waveguides can be written at any depth \rightarrow after PIC attach. (McGill)

Potential Application: RF over Fiber

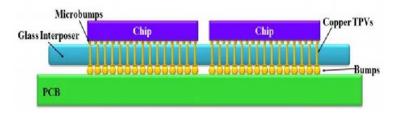


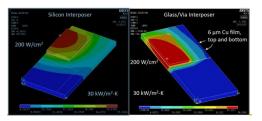
Class could be used as the substrate for this type of device.

Rick Stevens, Lockheed Martin


Potential Application: Photonic mm Wave Array Using Photodiodes

Dennis Prather, Phase Sensitive Solutions


Cadence Photonics Summit Design Example



Thermal Control with Cu Vias

- K for glass = 1 W/m-K
- K for Si = 130 W/m-K
- K for Cu = 384 W/m-K
- Thermal effects with glass can be mitigated by using heat spreaders and thermal vias
- Low K can work to your advantage when you need to thermally isolate die.
- Need to model EM effects of thermal vais

University of Maryland

Summary

- Advanced packaging required advances in substrate materials
- Glass is a promising new material due to electrical, mechanical, and optical properties
- Challenges of weak supply chain and difficulty in handling thin glass are being addressed
- Desirable RF and photonic properties make gall attractive for mm wave and RF over fiber applications
- Low thermal conductivity must be taken into account and can be used to an advantage.
- Development of PDKs for glass packaging is a key part of the supply chain.

Thank You

Paul Ballentine

Paul.Ballentine@mosaicmicro.com

(585) 748-1408